Arctic waters are heating up

The post Fires are raging again across Russia featured the image below, showing how much sea waters in the Arctic were already warming up on June 15, 2012.

Satellite image June 15, 2012 from DMI - http://ocean.dmi.dk/arctic/satellite/index.uk.php


The animated image below shows warming of Arctic waters for the period June 13 up to July 1, 2012.



Note: This file is a 1.7MB animation that may take some time to fully load. 

Sea water temperatures in the Arctic are likely to warm up even further, as the summer sun warms up the ocean currents and the rivers, and as less sunlight gets reflected by sea ice and is instead warming up ever larger areas of water. The image below shows the extent to which waters did warm up in September 2011.



As described in the post Abrupt Local Warming, sea surface anomalies of over 5 degrees Celsius were recorded in August 2007 (NOAA image right). 

Strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to one study, and bottom water temperatures on the mid-shelf increased by more than 3 degrees Celsius compared to the long-term mean.

Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere. 

The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. 

Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.

Since waters can be very shallow in the Arctic, much of the methane can rise up through these waters without getting oxidized. 

As the methane causes further warming in the atmosphere, this will contribute to the danger of even further methane escaping, further accelerating local warming, in a vicious cycle that can lead to catastrophic conditions well beyond the Arctic.

Finally, remember the image that Professor Peter Wadhams added in his supplementary evidence to the EAC. Below is an annotated version, from Arcus.org

Figure 6. Composite satellite measurements of sea surface temperature (SST) and real-
color land and sea ice images for the end of the summer 2011 season in the Pacific Arctic.
Note extreme temperature maximums of 5-8 °C and that multiple ice, atmosphere and
ocean processes help reinforce albedo feedbacks (after Wood et al., submitted).

Earth on Fire


Two people have died in the wildfire in Colorado Springs, 347 homes have been destroyed and more than 35,000 people have been forced to evacuate their homes, in the most destructive wildfire in Colorado history, reports Reuters. The destruction surpassed the 257 homes destroyed recently by a large blaze north of Denver.
According the Wikipedia, the 2012 Colorado wildfires have now claimed 5 fatalities, over 600 homes have been destroyed and at least 202,425 acres have burned (i.e. 316.3 square miles or 819.2 square kilometers).
Below, a photo of the smoke cloud at Colorado Springs from the local Waldo Canyon fire, taken on June 26, 2012, by U.S. Air Force/Mike Kaplan.


An AP news update at USAtoday includes:
• Idaho: A fast-moving 1,000-acre wildfire in eastern Idaho that destroyed 66 homes and 29 outbuildings was expected to be contained Saturday. Some 1,000 residents were evacuated.
• Utah: More than 50 houses were destroyed.
• Montana: Authorities in eastern Montana ordered the evacuation of several communities Saturday as the Ash Creek Complex fires, which has burned more than 70 homes this week, consumed another 72 square miles. The blaze grew to 244 square miles overnight.
• Wyoming: A wind-driven wildfire in a sparsely populated area of southeastern Wyoming exploded from eight square miles to nearly 58 square miles in a single day, and an unknown number of structures have burned. About 200 structures were considered threatened.
NASA has released a map, an edited version of which is below, showing the intensity and scope of the heat wave in the western United States, with temperature anomalies reaching 12 degrees Celsius in the period of June 17 to 24, 2012. Colorado experienced the brunt of the heat wave and had eight large wildfires burning on June 28, 2012. Wyoming and Utah—other states that have seen unusually hot weather—together had nine wildfires burning.

NASA adds that this heat wave, like all extreme weather events, has its direct cause in a complex set of atmospheric conditions that produce short-term weather. However, weather occurs within the broader context of the climate, and there’s a high level of agreement among scientists that global warming has made it more likely that heat waves of this magnitude will occur.
The image on the right, edited from another NASA image, depicts the relative concentration of aerosols in the skies above the continental United States on June 26, 2012.
As the image below shows, the heat wave is moving east, with temperatures reaching extremely high values over much of the United States. The image, edited from weather.gov, shows temperature predictions in both Celsius and Fahrenheit.

The image below, edited from NOAA, shows that temperatures are predicted to reach peaks on the East Coast of over 115 degrees Fahrenheit on Sunday, July 1st, 2012.

The United States isn't the only place witnessing extreme temperatures. Fires are raging in Russia, while I recently described the danger of abrupt local warming in the Arctic.
The NASA Global Fire Map below shows fires detected by satellite from June 9 to June 18, 2012.

The image below, from the Climate Emergency Institute, shows that most of the largest climate feedbacks take place at higher latitudes on the Northern Hemisphere.